منابع مشابه
Learning English Auxiliary Modal Verbs by Iranian Children
Modal verbs in English are challenging to learn by speakers of other languages. The purpose of thiswas to shed light on the use of gesture in learning English modal verbs by Persian-speaking children.To achieve this, 60 elementary Iranian learners, studying at some institutes in Karaj took part in thisstudy. The participants were randomly put into one experimental group and one control group. T...
متن کاملIncomplete Attribute Learning with auxiliary labels
Visual attribute learning is a fundamental and challenging problem for image understanding. Considering the huge semantic space of attributes, it is economically impossible to annotate all their presence or absence for a natural image via crowdsourcing. In this paper, we tackle the incompleteness nature of visual attributes by introducing auxiliary labels into a novel transductive learning fram...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملRobust Distance Metric Learning with Auxiliary Knowledge
Most of the existing metric learning methods are accomplished by exploiting pairwise constraints over the labeled data and frequently suffer from the insufficiency of training examples. To learn a robust distance metric from few labeled examples, prior knowledge from unlabeled examples as well as the metrics previously derived from auxiliary data sets can be useful. In this paper, we propose to...
متن کاملReinforcement Learning with Unsupervised Auxiliary Tasks
Deep reinforcement learning agents have achieved state-of-the-art results by directly maximising cumulative reward. However, environments contain a much wider variety of possible training signals. In this paper, we introduce an agent that also maximises many other pseudo-reward functions simultaneously by reinforcement learning. All of these tasks share a common representation that, like unsupe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning: Science and Technology
سال: 2020
ISSN: 2632-2153
DOI: 10.1088/2632-2153/aba7b3